Between Silk and Cyanide

An Intro to cryptography, and why it applies to you.

Early Beginnings

- First cryptography system credited to the Spartans - Scytale
- Mentioned in the Kama-Sutra - mlecchita-vikalpa - Art of secret writing
- Julius Caesar in the Gallic Wars - Caeser Cipher
- Mary Queen of scots
- Vigenère Cypher - Sixteenth century
- Mechanisation - Enter Babbage
- World war one - ADFGVX, The Zimmerman Telegram
- The modern age of crypto...

Bombes, Bletchly \& Bombs

- All previous ciphers had a short key length to ciphertext length.
- If the key is as long as the cipher text, it is uncrackable (In theory)
- Enter the enigma

I told you once

- The only system that is 100% secure is the one time pad
- Relies on random number generation
- But how do you distribute Keys?

Standards, love 'em

- US seeks to create a new standard for digital encryption
- Adopted 1976 - Data Encryption Standard
- Had 56bit key. Rumoured to be knobbled by the NSA
- 56bit key didn't last long, may as well use Welsh.
- Improved with 3DES
- Later replaced with Advanced Encryption Standard - AES

Helpful Hippy

- AES, 3DES, all suffered from one problem
- Key Exchange
- First solved by Whitfield Diffie \& Martin Hellman
- Diffie-hellman Solved it
- Not the tidiest solution, but it gave hope

Manischewitz is the answer

- First discovered by Ronald Rivest after a Passover Party with some students
- Published by Ronald Rivest, Adi Shamir and Leonard Adleman
- Called RSA
- Based on one way mathematical functions and large prime numbers
- Public Key Cryptography is born.

$P \& Q \& E \& N$

- The maths of it all:
- p and q are large prime numbers, and kept secret
- p and q multiplied together gives us N
- e is another large prime number
- e and N together consist of the public Key, p and q the secret key
- d is calculated using Euclids algorithm and the second equation

$$
\begin{array}{r}
C=M^{e}(\bmod N) \\
e \times d=1(\bmod (p-1) \times(q-1)) \\
M=C^{d}(\bmod N)
\end{array}
$$

Prove it

- Key exchange solved
- Secure if using a big enough key
- Does rely on secure random numbers
- A whole new world of possibilities arises
- Can be used for proof of sender, as well as encryption

Got a license for that T-Shirt?

- RSA was rapidly classified as a munition by the US
- Electronic export of RSA illegal
- Enter Phil Zimmerman
- Pretty Good Privacy provides for ubiquitous cryptography.
- Arrest Phil Zimmerman
- Release Phil Zimmerman
- Never say no to a geek

A wilderbeast at this time of night?

- PGP was good, very good
- It wasn't however "free"
- GNU implement PGP (in canada) and release under the GPL
- Strong Encryption is now free for everyone to enjoy.
- What has this got to do with you?

You did what with the fish?

- Why do I need crypto?
- I have done nothing wrong so have nothing to hide
- RIP
- Vulnerable to Rubber hose cryptanalysis

What do I do about it?

- Generate a key
- Distribute the key
- Sign and be signed
- Use it

Find out more

-The Code Book - Simon Singh - ISBN-9781857028799

- Applied Cryptography - Bruce Schnier - ISBN 9780471117094
- Secrets and lies - Bruce Schnier - ISBN 9780471453802
- Beyond Fear - Bruce Schnier - ISBN 9780387026206
- The art of deception - Kevin Mitnick - ISBN 9780764542800
- Cryptogram - Bruce Schnier - Monthly newsletter
- Any Questions?

Euclids Algorithm

```
int gdc(int a, int b)
{
    return (b == 0 ? a : gcd(b, a % b) );
}
```

